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Rossby vortex simulation on a paraboloidal coordinate system using the lattice Boltzmann metho
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In this paper, we apply our compressible lattice Boltzmann model to a rotating parabolic coordinate system
to simulate Rossby vortices emerging in a layer of shallow water flowing zonally in a rotating paraboloidal
vessel. By introducing a scaling factor, nonuniform curvilinear mesh can be mapped to a flat uniform mesh and
then normal lattice Boltzmann method works. Since the mass per unit area on the two-dimensional~2D!
surface varies with the thickness of the water layer, the 2D flow seems to be ‘‘compressible’’ and our
compressible model is applied. Simulation solutions meet with the experimental observations qualitatively.
Based on this research, quantitative solutions and many natural phenomena simulations in planetary atmo-
spheres, oceans, and magnetized plasma, such as the famous Jovian Giant Red Spot, the Galactic Spiral-vortex,
the Gulf Stream, and the Kuroshio Current, etc., can be expected.
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INTRODUCTION

In recent years, the lattice Boltzmann method~LBM ! has
developed into an effective numerical scheme for simulat
fluid flows and modeling physics in fluid@1–4#. The scheme
is particularly successful in fluid flow applications involvin
interfacial dynamics and complex boundaries. Meanwh
the LBM has demonstrated a significant potential and br
applicability with numerous computational advantages,
cluding the parallelism of algorithm, the simplicity of pro
gramming, and the ability to incorporate microscopic int
actions. However, compared to the state-of-the-art of
conventional computational fluid dynamics technique,
LBM still suffers some limitations. One of them is the un
formity of its mesh grids. Historically, the LBM was deve
oped from the lattice-gas automata method~LGAM ! @5#,
consequently, the LBM inherits some features from its p
cursor. In the LGAM, the dynamics of particles evolving in
lattice space consists of two steps: Particles meeting at
same site collide according to a set of hard-sphere collis
rules that conserve mass, momentum, and energy~for multi-
speed models! at each lattice site; after colliding, particle
stream to the neighboring sites in the directions of their
locities. The small number of discrete velocities allowed
consistent with the lattice structure. In other words, the d
cretion of physical space is coupled with the discretion
momentum space. The lattice Boltzmann model was a di
transcription from the lattice-gas automata. The Boole
variables in the LGAM were replaced by real-number sing
particle distribution functions that eliminates the intrins
stochastic noise in lattice-gas automata and subsequentl
hance the computational efficiency. Two further improv
ments have been made to enhance the computational
ciency in the LBM already: The linearization of the collisio
operator@2# and the Bhatnagar-Gross-Krook~BGK! approxi-
mation@6# ~which is also sometimes called single relaxatio
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time approximation@3#!. However, the uniformity of the lat-
tice structure is persistent, which greatly hampers the br
application of the LBM because a curvilinear or irregul
grid is much more efficient for many practical problems.

During the past few years, several researchers were m
vated by such considerations to extend the applicability
the LBM to irregular lattices. Succiet al. @7# first proposed a
finite-volume formulation of the lattice Boltzmann equatio
Then, Chen@8# developed another elegant finite-volum
scheme theoretically. Quite recently, H. Xiet al. @9# pre-
sented a simple but efficient finite-volume LBM from th
point of view of modern finite-volume methods, which
applicable to unstructured meshes with arbitrary connec
ity. However, the above-mentioned approaches of using
regular meshes are mostly theoretical research. Their ap
cations need to be exploited. A scheme well applicable
long-term unsteady flow simulation, named as t
interpolation-supplemented lattice Boltzmann equation~IS-
LBE! scheme was presented by X. Heet al. @10#. In the
ISLBE scheme, which is an LBM on polar coordinate sy
tem, a flow domain is discretized into an irregular mesh.
each node sits a regular velocity framework. Besides nor
steps, relaxation, and streaming, the ISLBE includes an
terpolation step to reconstruct the distribution function
grid nodes at the next step. Using the ISLBE scheme
simulate the two-dimensional~2D! vortex shedding phenom
enon behind a circular cylinder for Reynolds numbers ra
ing from 50–150, the solutions are consistent with previo
experimental observations and numerical simulations.

In this paper, we are going to apply our compressible
model @11# to a rotating parabolic coordinate system. In o
der to simulate Rossby vortices emerging in a layer of sh
low water flowing zonally in a rotating paraboloidal vess
we need to treat a nonuniform curvilinear mesh. The cruc
idea is to map the nonuniform curvilinear mesh to flat u
form mesh by rescaling all related physical quantities
cording to their dimensions using a scaling factor that
introduced to express a different linear scale at a differ
height along the curvilinear surface, and the different co
ponents of the distribution functions streaming between
©2001 The American Physical Society03-1
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ferent levels are modified accordingly. As a result, t
scheme still consists of two steps: relaxation and stream
Since the mass-per-unit area projected on the 2D sur
varies with the thickness of the water layer, the 2D flo
seems to be ‘‘compressible.’’ We should regard the sou
speedcs as the speed of surface wave in the present cas
compressible LBM scheme developed by us previously@11#,

FIG. 1. Experimental configuration for producing Rossby vo
ces by zonal flow:~1! vessel with parabolic bottom;~2! liquid sur-
face limited;~3! camera;~4,5! rotating rings to create zonal flows
The vessel and the camera rotate at an angular rate.
05670
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is applied. Our simulation of Rossby vortices are consist
with the experimental observations reported by the Antip
and Nezlin and Fridmanet al. groups@12,13# qualitatively.
The groups obtained a lot of experimental results ab
Rossby vortices, spiral structures, and solitons@14# that are
closely related with many natural phenomena in planet
atmospheres, oceans, and magnetized plasma, such a
famous Jovian Giant Red Spot, the Galactic Spiral-vort
the Gulf Stream, and the Kuroshio Current, etc.

I. EXPERIMENTAL SETUP AND PARABOLOIDAL
COORDINATES SYSTEM

Figure 1 shows the sketch of the experimental setup
revolutionary paraboloidal vessel is rotating with angular v
locity v0, a layer of water of uniform thickness is formed
the vessel when gravity is balanced by the centrifugal for
As the thickness of the water layer is small compared w
the linear dimension of its surface, the simulation can
treated as a 2D problem. Shearing flow is driven by a pai
rings with differential rotation speedv1 andv2 at the radii
R1 andR2, respectively. It becomes unstable and vortices
produced when certain critical strength of the differential
tation is attained. The perturbed layer is no longer of unifo
thickness. Densityr is defined as the mass of water-per-u
area projected normally to the curved surface of the vesse
varies from site to site as well as with timet.

The band region between radiiR1 andR2 is covered with
a nonuniform paraboloidal mesh~see Fig. 2! which divides
the circumstance intoN grids throughout the bandwidth from
the bottom to the top. The curvilinear mesh so obtained
nonuniform and the edge lengtha of the grids increases with
the level height.

In order to match the experimental solutions, we m
deal with our simulations on a rotating parabolic coordin
system~Fig. 3!. The relations between the Cartesian coor
nates (x,y,z) and the paraboloidal coordinates (h,z,f) are
FIG. 2. Nonuniform curvilinear mesh.
3-2
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ROSSBY VORTEX SIMULATION ON A PARABOLOIDAL . . . PHYSICAL REVIEW E 64 056703
x5hz cosf, ~1!

y5hz sinf, ~2!

z5
1

2
~h22z2!. ~3!

Let uW be the velocity of the water in the frame of referen
corotating with the vessel. WhenuW 50, the tangential com-
ponent of gravity is balanced by tangential part of the c
trifugal force. WhenuW Þ0, the resultant forceFW exerting on
the water consists of the Coriolis force and the part of
centrifugal force with quadratic dependence on the com
nents ofuW , i.e.,

Ff52~sinu!uhv02
~sinu!ufuh

r
, ~4!

Fh522~sinu!ufv01
~sinu!uf

2

r
, ~5!

with

sinu5
p

Ar 21p2
,

where p is the focus length of the paraboloid,v05Ag/z0 the
angular speed of the rotating parabolic system,z5z05p2 is
the equation of the paraboloidal vessel surface.

II. LATTICE BOLTZMANN METHOD
FOR ‘‘COMPRESSIBLE’’ 2D FLOWS

Since the mass-per-unit area projected on the 2D sur
varies with the thickness of the water layer, the 2D flo
seems to be ‘‘compressible.’’ We should regard the sou
speedcs as the speed of surface wave in the present cas

The LBM for compressible flow developed by us in@11#
is applied at first to a uniform hexagonal grid on a rectan
lar domain with N cells horizontally connected by cycl
boundary condition. We take the FHP seven-bit model:ueWau
51 for a51, . . . ,6, andueW0u50. The equation of the evolu

FIG. 3. Paraboloidal coordinate system and its unit vectors.
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tion of the distribution function is

f a~xW1eWa ,t11!5 f a* ~xW ,t !1Va* ~xW ,t !, ~6!

where the collision term assumes the form

Va* 52
1

t
~ f a* 2 f a*

eq!, ~7!

and

f a* ~xW ,t !5 f a~xW ,t !1Fa~xW ,t !1Fa~xW ,t !, ~8!

Fa5
1

3
eWa•gcs

2¹W r, ~9!

Fa5
1

3
eWa•FW . ~10!

Fa is an attractive force introduced in order to reduce
wave speedcs to cs* 5A12gcs in which g is an adjustable

parameter.FW is the resultant force exerting on the simulat
system, the components of which are given in Eqs.~4! and
~5! above. The equilibrium distribution functionsf a*

eq in Eq.
~7! are taken as

f a*
eq5r@cs

21eWa•uW * 12~eWa•uW * !22uW * 2#, ~11a!

f 0*
eq5r~122cs

22uW * 2!, ~11b!

here,r* anduW * are defined as

r* 5 (
a50

6

f a* 5r, ~12!

r* uW * 5 (
a51

6

eWaf a* 5ruW 1gcs
2¹W r1FW , ~13!

with

r5 (
a50

6

f a , ~14a!

ruW 5 (
a51

6

eWaf a , ~14b!

and

(
a50

6

Fa5 (
a50

6

Fa50,

(
a50

6

eWaFa5gcs
2¹W r, (

a50

6

eWaFa5FW .

By the Chapmann-Enskog expansion for theeWa’s zeroth
and first moments of Eq.~6!, we obtain
3-3
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]r

]t
1¹W •~ruW !50, ~15!

r@] tuW 1~uW •¹W !uW #52cs*
2¹W r1¹W 2~huW !1¹W @¹W •~zuW !#1FW ,

~16!

with cs* 5A12gcs effective sound speed for compressib
flows.

III. MAPPING THE NONUNIFORM CURVILINEAR MESH
ONTO A UNIFORM FLAT MESH BY RESCALING

In order to use the normal LBM to simulate the Ross
vortices in a zonal band on a paraboloidal surface wit
nonuniform mesh, we cut the band along theh direction and
map it onto a rectangle with uniform mesh. Since the ed
length of grids in the uniform mesh corresponds to differ
scales at different heights in the curvilinear mesh, all
physical quantities, such as density, velocity, etc., should
rescaled accordingly.

Let aj be the edge length of the nonuniform curviline
meshes in thej th horizontal line counted from bottom~Fig.
4!. We can derive a recursion formula for the scaling ra
from the configuration of treated mesh.

aj 11

aj
511

2pb

NA11~r j /p!2
, ~17!

with b the height-to-edge ratio, which isA3/2 for hexagonal
grid. Taking the lower boundaryr 05R1 , a052pR1 /N as
datum, we can calculatea1 ,a2 , . . . , one by one by Eq.~17!
up to the upper boundaryaNY

.
All macrophysical quantities such as density, momentu

and wave speed in our simulation should be multiplied b
scaling factor according to their length dimension, e.g.,r j

→r jaj
2 ,cs j→cs j /aj , etc., wherej 50,1,2,3, . . . , refers to

the numbering of the horizontal levels. Besides, distribut
functions should be rescaled at certain stages. Namely, w
streaming, distribution functions from levelj 11 to level j
are multiplied by factoraj

2/aj 11
2 and aj

2/aj 21
2 from the j

FIG. 4. Recursive relation of scaling factor.
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21 level to thej level. The same treatment must be done

¹W r in Eq. ~13! which is discretized as (4/9)gcs
2$r(xW1eWa)

2r(xW2eWa)2(1/8)@r(xW12eWa)2r(xW22eWa)#%(11).
The effect wave speedcs* 5csA12g should be scaled a

cs j*

cs0*
5

a0

aj
. ~18!

We accomplish this by scaling of g instead ofcs

gj512
12g0

aj
2

, ~19!

whereg0 is g at level j 50.
Appropriate g0&1 is chosen to get the effectivecs*

needed in simulations. In this paper, we chooseg050.99.
Now the iteration procedures described in Sec. II are c

ried on as if we are working on a flat uniform mesh.

IV. RESULTS OF SIMULATION

All our simulations are conducted according to the expe
mental setup shown in Fig. 1. The vessel’s dimensions
R150.05 m, R250.15 m, p50.0817 m. The vessel an
camera rotate at a fixed angular ratev0510.99 rad/s~clock-
wise!. Both the angular speed and sense of rotation of zo
flows (v1 ,v2) are adjustable.

Our simulations are carried on in a corotating frame w
the vessel.

SetNX5498 sites along circumstance of the vessel. Fr
the recursion formula~17!, NY5153 is generated along th
surface of the vessel. The speed of surface wave is assu
0.5 m/s andcs50.52 so that the relation between lattice un
and real physical unit is established

l 05
2pR2

NX
50.001907 m/l , ~20!

FIG. 5. A schematic illustration of cyclone~A! and anticyclone
(B).
3-4
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t05
2pcsR2A~12g0!

NXvs
50.000198 s/t, ~21!

where m/l and s/t mean meters per lattice and seconds
time step, respectively.

All simulations solutions shown below are projectio
drawings from upper to down and correspond to stationa
The time steps in them can be transfered to be real phys
units via Eq.~21!.

At the lower boundaryj 50 and the upper boundaryj
5NY , we force the density fixed tor5r051 and the ve-
locities fixed to u152pR1(v12v0) and u252pR2(v2

FIG. 6. Four anticyclonic Rossby vortices generated by the
ticyclonic shear flow thatv2510.99 rad/s~counterclockwise! and
v154.82 rad/s ~clockwise!, 50 000 time steps, thenv1 is in-
creased to 17.28 rad/s~clockwise!, 15 000 time steps more, totall
65 000 time steps.

FIG. 7. Two anticyclonic Rossby vortices generated by the
ticyclonic shear flowv2510.99 rad/s~counterclockwise! and v1

517.28 rad/s~clockwise!, 650 000 time steps.
05670
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2v0), respectively. The periodic boundary condition is tak
at the left-side and right-side boundaries.r5r051 and u
5u050 are put at all the inner sites initially.

The Rossby vortices emerge in the flow driven by t
shearing velocities of the upper and lower boundaries.

By definition @14# ~see schematic illustration in Fig. 5!, if
the vorticity of zonal flows is parallel to the local compone
of the angular velocity, the vorticity~A! is cyclonic; other-
wise, the vorticity~B! is anticyclonic.

The following phenomena were reported by the Nez
and Snezhkin group in their experiments@14#.

~1! If the zonal flow is anticycolonic, the vortices pro
duced are accordingly anticyclones;

-

-

FIG. 8. Single anticyclonic Rossby vortex generated by the
ticyclonic shear flowv255.24 rad/s~counterclockwise! and v1

517.28 rad/s~clockwise!.

FIG. 9. No vortex generated by the cyclonic shear flowv2

57.33 rad/s~clockwise! andv1521.99 rad/s~counterclockwise!.
3-5
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~2! If the zonal flow is cyclonic, no large-scale vortex
generated.

In our simulations we found the following phenomen
Four anticyclonic Rossby vortices are produced by two a
cyclonic shear flows after 65 000 time steps, in which 50 0
steps were run withv2510.99 rad/s~counterclockwise! and
v154.82 rad/s~clockwise!, followed by 15 000 steps with
v1 increased to 17.28 rad/s~clockwise! ~Fig. 6!; however,
two anticyclonic Rossby vortices are produced after 65 0
time steps ifv1517.28 rad/s~clockwise! from the begining
~Fig. 7!. That is to say, the final state of vortical flow
history dependent.

In another case, single anticyclonic Rossby vortex
produced by a shear flowv255.24 rad/s~counterclock-
wise! andv1517.28 rad/s~clockwise! ~Fig. 8!.

No vortex produced by a cyclonic shear flowv2
57.33 rad/s ~clockwise! and v1521.99 rad/s ~counter-
clockwise! ~Fig. 9!.

The results of our simulation are as follows.

~1! When the shear flow is anticycolonic, the vortices p
duced are, accordingly, anticyclones~Figs. 6, 7, 8!, and the
vortex number is history dependent, as shown in Figs
and 7.
,

05670
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~2! When the shear flow is cyclonic, no vortex emerg
~Fig. 9!, which agrees with the experimental solutions fro
the Antipov and Nezlin group.

V. CONCLUSION

By introducing scaling factors, we generalize the LB
from uniform flat mesh to nonuniform curvilinear mesh. U
ing the LBM for compressible flows developed by us, w
have simulated the Rossby vortices on a rotating parab
Coordinate frame and the results are consistent with exis
experimental observations qualitatively, which encoura
us to explore more quantitative solutions relating to Ros
vortices and simulate more complicated experimental p
nomena, such as drift vortices and solitons both in nature
in magnetized plasma, galactic spiral structures, etc.
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